Ссылки

DOI

Differential scanning calorimetry studies of the complex oxide YBaCo2O6-δ (YBC), combined with the literature data, allowed outlining the phase behavior of YBC depending on the oxygen content and temperature between 298 K and 773 K. The oxygen nonstoichiometry of single-phase tetragonal YBC was measured at different temperatures and oxygen partial pressures by both thermogravimetric and flow reactor methods. The defect structure of YBC was analyzed. As a result, the thermodynamic functions ((Formula presented.), (Formula presented.)) of the defect reactions in YBC were determined. Experimental data on the oxygen content and those calculated based on the theoretical model were shown to be in good agreement. Standard enthalpies of formation at 298.15 K ((Formula presented.)) were obtained for YBC depending on its oxygen content using solution calorimetry. It was found that (Formula presented.) = f(6-δ) function is linear in the range of (6-δ) from 5.018 to 5.406 and that its slope is close to the value of the enthalpy of the quasichemical reaction describing oxygen exchange between the oxide and ambient atmosphere, which confirms the reliability of the suggested defect structure model. © 2022 by the authors.
Язык оригиналаАнглийский
Номер статьи10
ЖурналMembranes
Том13
Номер выпуска1
DOI
СостояниеОпубликовано - 2023

    Предметные области WoS

  • Биохимия и молекулярная биология
  • Химия, Физическая
  • Технологии, Химические
  • Материаловедение, Междисциплинарные труды
  • Наука о полимерах

    Предметные области ASJC Scopus

  • Chemical Engineering (miscellaneous)
  • Filtration and Separation
  • Process Chemistry and Technology

ID: 33977908