Standard

Kinetics of Aluminum and Scandium Extraction from Desilicated Coal Fly Ash by High-Pressure HCl Leaching. / Shoppert, Andrei; Valeev, Dmitry; Loginova, Irina.
в: Metals, Том 13, № 12, 1994, 2023.

Результаты исследований: Вклад в журналСтатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{27f1e65c18614c85a986a7e27ed601b2,
title = "Kinetics of Aluminum and Scandium Extraction from Desilicated Coal Fly Ash by High-Pressure HCl Leaching",
abstract = "Coal fly ash (CFA) is a waste that forms via coal combustion in thermal power stations. CFA consists of numerous components, whose recovery can address environmental and resource concerns associated with sustainable development. Most of the alumina (Al2O3) and rare-earth elements (REEs) in CFA are contained in the amorphous glassy mass and in the refractory mullite phase (3Al2O3·SiO2), which can be dissolved only using high-pressure acid leaching (HPAL). In this paper, the method of preactivation of CFA by treatment with a highly concentrated NaOH solution is used to increase the efficiency of Al and Sc extraction during HPAL. This method allows for the elimination of an inert aluminosilicate layer from the surface of mullite, transferring the REEs into an acid-soluble form. The Al and Sc extraction can reach 80% after HCl HPAL at T = 170 °C and a 90 min duration. According to the kinetic data, the dissolution of Al follows the surface chemical reaction and intraparticle diffusion shrinking core models in the initial and later stages of leaching, respectively. A high activation energy of 52.78 kJ mol−1 was observed at low temperatures, and a change in the mechanism occurred after 170 °C when the activation energy decreased to 26.34 kJ mol–1. The obtained activation energy value of 33.51 kJ mol−1 for Sc leaching indicates that diffusion has a strong influence at all studied temperatures. The residue was analysed by SEM-EDX, XRF, BET, and XRD methods in order to understand the mechanism of DCFA HPAL process.",
author = "Andrei Shoppert and Dmitry Valeev and Irina Loginova",
note = "This research was supported by the Russian Science Foundation and Government of Sverdlovsk region, Joint Grant No 22-23-20150.",
year = "2023",
doi = "10.3390/met13121994",
language = "English",
volume = "13",
journal = "Metals",
issn = "2075-4701",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "12",

}

RIS

TY - JOUR

T1 - Kinetics of Aluminum and Scandium Extraction from Desilicated Coal Fly Ash by High-Pressure HCl Leaching

AU - Shoppert, Andrei

AU - Valeev, Dmitry

AU - Loginova, Irina

N1 - This research was supported by the Russian Science Foundation and Government of Sverdlovsk region, Joint Grant No 22-23-20150.

PY - 2023

Y1 - 2023

N2 - Coal fly ash (CFA) is a waste that forms via coal combustion in thermal power stations. CFA consists of numerous components, whose recovery can address environmental and resource concerns associated with sustainable development. Most of the alumina (Al2O3) and rare-earth elements (REEs) in CFA are contained in the amorphous glassy mass and in the refractory mullite phase (3Al2O3·SiO2), which can be dissolved only using high-pressure acid leaching (HPAL). In this paper, the method of preactivation of CFA by treatment with a highly concentrated NaOH solution is used to increase the efficiency of Al and Sc extraction during HPAL. This method allows for the elimination of an inert aluminosilicate layer from the surface of mullite, transferring the REEs into an acid-soluble form. The Al and Sc extraction can reach 80% after HCl HPAL at T = 170 °C and a 90 min duration. According to the kinetic data, the dissolution of Al follows the surface chemical reaction and intraparticle diffusion shrinking core models in the initial and later stages of leaching, respectively. A high activation energy of 52.78 kJ mol−1 was observed at low temperatures, and a change in the mechanism occurred after 170 °C when the activation energy decreased to 26.34 kJ mol–1. The obtained activation energy value of 33.51 kJ mol−1 for Sc leaching indicates that diffusion has a strong influence at all studied temperatures. The residue was analysed by SEM-EDX, XRF, BET, and XRD methods in order to understand the mechanism of DCFA HPAL process.

AB - Coal fly ash (CFA) is a waste that forms via coal combustion in thermal power stations. CFA consists of numerous components, whose recovery can address environmental and resource concerns associated with sustainable development. Most of the alumina (Al2O3) and rare-earth elements (REEs) in CFA are contained in the amorphous glassy mass and in the refractory mullite phase (3Al2O3·SiO2), which can be dissolved only using high-pressure acid leaching (HPAL). In this paper, the method of preactivation of CFA by treatment with a highly concentrated NaOH solution is used to increase the efficiency of Al and Sc extraction during HPAL. This method allows for the elimination of an inert aluminosilicate layer from the surface of mullite, transferring the REEs into an acid-soluble form. The Al and Sc extraction can reach 80% after HCl HPAL at T = 170 °C and a 90 min duration. According to the kinetic data, the dissolution of Al follows the surface chemical reaction and intraparticle diffusion shrinking core models in the initial and later stages of leaching, respectively. A high activation energy of 52.78 kJ mol−1 was observed at low temperatures, and a change in the mechanism occurred after 170 °C when the activation energy decreased to 26.34 kJ mol–1. The obtained activation energy value of 33.51 kJ mol−1 for Sc leaching indicates that diffusion has a strong influence at all studied temperatures. The residue was analysed by SEM-EDX, XRF, BET, and XRD methods in order to understand the mechanism of DCFA HPAL process.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85180718291

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001130713000001

U2 - 10.3390/met13121994

DO - 10.3390/met13121994

M3 - Article

VL - 13

JO - Metals

JF - Metals

SN - 2075-4701

IS - 12

M1 - 1994

ER -

ID: 50631438