Ссылки

DOI

The objective of this study is to increase the natural clay mineral-based bricks' ability to shield γ-rays without the use of external doping materials. Six brick samples were consequently developed at various pressure rates (PRs). The chemical composition and structure of the manufactured bricks are unaffected by the PR applied. The main constituents in the clay used to make bricks are illite and quartz minerals, according to an X-ray diffraction pattern. Additionally, scanning electron microscopy and energy dispersion X-rays have demonstrated the morphology and chemical composition of the used clay. Besides, the Mh-300A density meter shows an increase in the fabricated bricks' density by increasing the PR, where the brick's density increased by 32.92% by increasing the PR from 7.61 to 114.22 MPa, respectively. Also, the effects of the PR on the radiation shielding properties of the fabricated bricks were investigated using a NaI (Tl) detector. The data reveal that increasing the PR between 7.61 and 114.22 MPa improved the linear attenuation coefficient by 44.5, 23.8, 24.2, and 24.8%, respectively, for gamma-ray energies of 0.662, 1.173, 1.252, and 1.332 MeV. The capacity of fabricated bricks to shield against radiation increases as the linear attenuation coefficient increases. The lead's equivalent thickness and half-value thickness of the fabricated clay-based bricks, on the other hand, decreased. As a result, the compacted natural clay brick, which is a lead-free material, provides a suitable alternative for gamma-ray shielding in radioactive locations.
Язык оригиналаАнглийский
Номер статьи20230167
ЖурналOpen chemistry
Том21
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв. 2023

    Предметные области ASJC Scopus

  • Химия в целом
  • Materials Chemistry

    Предметные области WoS

  • Химия, Междисциплинарные труды

ID: 49830071