Standard

ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА. / Щеклеин, Сергей Евгеньевич; Дубинин, Алексей Михайлович.
в: Международный научный журнал "Альтернативная энергетика и экология", № 19-24 (342-347), 2020, стр. 19-30.

Результаты исследований: Вклад в журналСтатьяРецензирование

Harvard

Щеклеин, СЕ & Дубинин, АМ 2020, 'ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА', Международный научный журнал "Альтернативная энергетика и экология", № 19-24 (342-347), стр. 19-30. https://doi.org/10.15518/isjaee.2020.19-24.19-30

APA

Щеклеин, С. Е., & Дубинин, А. М. (2020). ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА. Международный научный журнал "Альтернативная энергетика и экология", (19-24 (342-347)), 19-30. https://doi.org/10.15518/isjaee.2020.19-24.19-30

Vancouver

Щеклеин СЕ, Дубинин АМ. ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА. Международный научный журнал "Альтернативная энергетика и экология". 2020;(19-24 (342-347)):19-30. doi: 10.15518/isjaee.2020.19-24.19-30

Author

Щеклеин, Сергей Евгеньевич ; Дубинин, Алексей Михайлович. / ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА. в: Международный научный журнал "Альтернативная энергетика и экология". 2020 ; № 19-24 (342-347). стр. 19-30.

BibTeX

@article{862db5925e254c31ac82fcb9950d28a1,
title = "ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА",
abstract = "Обсуждалась возможность создания энергетической установки с высокотемпературными топливными элементами, которая работает на водородосодержащей газовой смеси (синтез-газ), получаемой в требуемых для работы двигателя небольших объемах из жидкого топлива - метанола. В этом случае снимаются все проблемы, связанные с необходимостью получения, хранения и транспортировки водорода, так как темпы его образования и потребления двигателем равны. Рассмотрена энергетическая установка мощностью 10 кВт, где прямое преобразование энергии химической реакции окисления водорода в аноде ТОТЭ в электрическую энергию происходит на базе продуктов воздушной конверсии метанола в каталитической горелке с использованием алюминий-никелевых катализаторов. Метанол сначала поступает в котел-утилизатор для нагрева до кипения и испарения, далее в парообразном виде - в каталитическую горелку, куда поступает и нагретый в котле-утилизаторе воздух. При коэффициенте расхода воздуха, равном 0,5, происходит конверсия метанола с образованием синтез-газа. Затем синтез-газ охлаждается с 988 °С до 700 °С воздухом, подаваемым в катодный канал. Воздух нагревается с 20 °С до 600 °С. Синтез-газ поступает в анодный канал, из которого водород диффузией поступает в анод, где окисляется кислородом воздуха, подаваемого в катодный канал. Продукты окисления водорода выходят в анодный канал. Продукты из анодного канала и обедненный кислородом воздух из катодного канала поступают в котел-утилизатор, где окисляется не поступивший в анод водород и содержащийся в синтез-газе оксид углерода. Теплота окисления используется на подогрев первичного воздуха и испарение метанола. Приведен физико-химический анализ энергетической эффективности установки с высокотемпературными топливными элементами, работающей на синтез-газе, получаемом в каталитическом процессе непосредственно в автомобиле из жидкого топлива - метанола. Полученная энергия используется для двигателя электромобиля. Электрический КПД установки равен 42,1 %, что по энергетической эффективности соответствует уровню лучших современных двигателей внутреннего сгорания.",
author = "Щеклеин, {Сергей Евгеньевич} and Дубинин, {Алексей Михайлович}",
year = "2020",
doi = "10.15518/isjaee.2020.19-24.19-30",
language = "Русский",
pages = "19--30",
journal = "Международный научный журнал {"}Альтернативная энергетика и экология{"}",
issn = "1608-8298",
publisher = "Общество с ограниченной ответственностью {"}Научно-технический центр ТАТА{"}",
number = "19-24 (342-347)",

}

RIS

TY - JOUR

T1 - ВОДОРОДНО-МЕТАНОЛЬНЫЕ ТОТЭ ДЛЯ ТРАНСПОРТА

AU - Щеклеин, Сергей Евгеньевич

AU - Дубинин, Алексей Михайлович

PY - 2020

Y1 - 2020

N2 - Обсуждалась возможность создания энергетической установки с высокотемпературными топливными элементами, которая работает на водородосодержащей газовой смеси (синтез-газ), получаемой в требуемых для работы двигателя небольших объемах из жидкого топлива - метанола. В этом случае снимаются все проблемы, связанные с необходимостью получения, хранения и транспортировки водорода, так как темпы его образования и потребления двигателем равны. Рассмотрена энергетическая установка мощностью 10 кВт, где прямое преобразование энергии химической реакции окисления водорода в аноде ТОТЭ в электрическую энергию происходит на базе продуктов воздушной конверсии метанола в каталитической горелке с использованием алюминий-никелевых катализаторов. Метанол сначала поступает в котел-утилизатор для нагрева до кипения и испарения, далее в парообразном виде - в каталитическую горелку, куда поступает и нагретый в котле-утилизаторе воздух. При коэффициенте расхода воздуха, равном 0,5, происходит конверсия метанола с образованием синтез-газа. Затем синтез-газ охлаждается с 988 °С до 700 °С воздухом, подаваемым в катодный канал. Воздух нагревается с 20 °С до 600 °С. Синтез-газ поступает в анодный канал, из которого водород диффузией поступает в анод, где окисляется кислородом воздуха, подаваемого в катодный канал. Продукты окисления водорода выходят в анодный канал. Продукты из анодного канала и обедненный кислородом воздух из катодного канала поступают в котел-утилизатор, где окисляется не поступивший в анод водород и содержащийся в синтез-газе оксид углерода. Теплота окисления используется на подогрев первичного воздуха и испарение метанола. Приведен физико-химический анализ энергетической эффективности установки с высокотемпературными топливными элементами, работающей на синтез-газе, получаемом в каталитическом процессе непосредственно в автомобиле из жидкого топлива - метанола. Полученная энергия используется для двигателя электромобиля. Электрический КПД установки равен 42,1 %, что по энергетической эффективности соответствует уровню лучших современных двигателей внутреннего сгорания.

AB - Обсуждалась возможность создания энергетической установки с высокотемпературными топливными элементами, которая работает на водородосодержащей газовой смеси (синтез-газ), получаемой в требуемых для работы двигателя небольших объемах из жидкого топлива - метанола. В этом случае снимаются все проблемы, связанные с необходимостью получения, хранения и транспортировки водорода, так как темпы его образования и потребления двигателем равны. Рассмотрена энергетическая установка мощностью 10 кВт, где прямое преобразование энергии химической реакции окисления водорода в аноде ТОТЭ в электрическую энергию происходит на базе продуктов воздушной конверсии метанола в каталитической горелке с использованием алюминий-никелевых катализаторов. Метанол сначала поступает в котел-утилизатор для нагрева до кипения и испарения, далее в парообразном виде - в каталитическую горелку, куда поступает и нагретый в котле-утилизаторе воздух. При коэффициенте расхода воздуха, равном 0,5, происходит конверсия метанола с образованием синтез-газа. Затем синтез-газ охлаждается с 988 °С до 700 °С воздухом, подаваемым в катодный канал. Воздух нагревается с 20 °С до 600 °С. Синтез-газ поступает в анодный канал, из которого водород диффузией поступает в анод, где окисляется кислородом воздуха, подаваемого в катодный канал. Продукты окисления водорода выходят в анодный канал. Продукты из анодного канала и обедненный кислородом воздух из катодного канала поступают в котел-утилизатор, где окисляется не поступивший в анод водород и содержащийся в синтез-газе оксид углерода. Теплота окисления используется на подогрев первичного воздуха и испарение метанола. Приведен физико-химический анализ энергетической эффективности установки с высокотемпературными топливными элементами, работающей на синтез-газе, получаемом в каталитическом процессе непосредственно в автомобиле из жидкого топлива - метанола. Полученная энергия используется для двигателя электромобиля. Электрический КПД установки равен 42,1 %, что по энергетической эффективности соответствует уровню лучших современных двигателей внутреннего сгорания.

UR - https://elibrary.ru/item.asp?id=45765162

U2 - 10.15518/isjaee.2020.19-24.19-30

DO - 10.15518/isjaee.2020.19-24.19-30

M3 - Статья

SP - 19

EP - 30

JO - Международный научный журнал "Альтернативная энергетика и экология"

JF - Международный научный журнал "Альтернативная энергетика и экология"

SN - 1608-8298

IS - 19-24 (342-347)

ER -

ID: 21910395