Standard

Signatures of nearly compensated magnetism and spin glass behavior in highly frustrated β-Mn-type Mn50Fe25+xAl25−x Heusler alloys. / Khorwal, Abhinav; Saha, Sujoy; Lukoyanov, Alexey et al.
In: The Journal of chemical physics, Vol. 160, No. 11, 114705, 21.03.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Khorwal A, Saha S, Lukoyanov A, Patra A. Signatures of nearly compensated magnetism and spin glass behavior in highly frustrated β-Mn-type Mn50Fe25+xAl25−x Heusler alloys. The Journal of chemical physics. 2024 Mar 21;160(11):114705. doi: 10.1063/5.0202812

Author

Khorwal, Abhinav ; Saha, Sujoy ; Lukoyanov, Alexey et al. / Signatures of nearly compensated magnetism and spin glass behavior in highly frustrated β-Mn-type Mn50Fe25+xAl25−x Heusler alloys. In: The Journal of chemical physics. 2024 ; Vol. 160, No. 11.

BibTeX

@article{e0e2709bcc6a4b5fb8f75fd591dc25e9,
title = "Signatures of nearly compensated magnetism and spin glass behavior in highly frustrated β-Mn-type Mn50Fe25+xAl25−x Heusler alloys",
abstract = "The present study examines the effect of Fe/Al concentration on the structural and magnetic properties of Mn-rich Mn50Fe25+xAl25−x (x = 5, 10, 15) Heusler alloys through x-ray diffraction, temperature- and field-dependent DC magnetization, thermoremanent magnetization, magnetic memory effect, AC susceptibility measurements, and DFT calculations. The samples crystallize in a cubic β-Mn structure. The trend shows a reduction in lattice parameters (unit cell volume) with the increasing Fe proportion. These alloys exhibit strong antiferromagnetic interactions with large frustration parameters, indicating the presence of competing magnetic interactions. The DC magnetization data reveal spin glass-like features with a peak at spin glass freezing temperature (Tf). The observation of bifurcation in temperature-dependent zero-field-cooled and field-cooled magnetization curves, exponential dependence of the temperature variation of remanence and coercivity, magnetic relaxation, and magnetic memory effect below Tf support the spin-glass character of these alloys. The frequency dependence of Tf is also examined in the context of dynamic scaling laws, such as the Vogel-Fulcher law and critical slowing down model, which further supports the presence of spin glass behavior. In the theoretical DFT calculations, the electronic structure is found to be metallic and similar for both spin projections. Moreover, the antiferromagnetic arrangement of the magnetic moments, in line with the experimental observations, is stabilized by exchange interactions, resulting in an almost compensated total magnetic moment of 0.02-0.38 µB/f.u. This is probably caused by the frustrated structure and non-stoichiometric compositions of Mn50Fe25+xAl25−x",
author = "Abhinav Khorwal and Sujoy Saha and Alexey Lukoyanov and Ajit Patra",
note = "A.K.P. acknowledges the support of SERB-DST, New Delhi, India (Grant No. CRG/2020/003590), and DST (Grant No. INT/RUS/RFBR/379). A.K.K. acknowledges UGC, New Delhi, India, for providing the financial support through a JRF Fellowship [No. 16-6(DEC. 2018)/2019 NET/CSIR]. A.V.L. acknowledges the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Electron,” No. 122021000039-4). The first-principles calculations are carried out on the supercomputer “Uran” IMM UrO RAN. The authors acknowledge the “Low temperature and high magnetic field facility under CIF” at the Central University of Rajasthan for magnetic measurements and Naveen L & Dr. S. Samal, IIT Indore, India, for SEM-EDAX measurements and fruitful discussions.",
year = "2024",
month = mar,
day = "21",
doi = "10.1063/5.0202812",
language = "English",
volume = "160",
journal = "The Journal of chemical physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

RIS

TY - JOUR

T1 - Signatures of nearly compensated magnetism and spin glass behavior in highly frustrated β-Mn-type Mn50Fe25+xAl25−x Heusler alloys

AU - Khorwal, Abhinav

AU - Saha, Sujoy

AU - Lukoyanov, Alexey

AU - Patra, Ajit

N1 - A.K.P. acknowledges the support of SERB-DST, New Delhi, India (Grant No. CRG/2020/003590), and DST (Grant No. INT/RUS/RFBR/379). A.K.K. acknowledges UGC, New Delhi, India, for providing the financial support through a JRF Fellowship [No. 16-6(DEC. 2018)/2019 NET/CSIR]. A.V.L. acknowledges the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Electron,” No. 122021000039-4). The first-principles calculations are carried out on the supercomputer “Uran” IMM UrO RAN. The authors acknowledge the “Low temperature and high magnetic field facility under CIF” at the Central University of Rajasthan for magnetic measurements and Naveen L & Dr. S. Samal, IIT Indore, India, for SEM-EDAX measurements and fruitful discussions.

PY - 2024/3/21

Y1 - 2024/3/21

N2 - The present study examines the effect of Fe/Al concentration on the structural and magnetic properties of Mn-rich Mn50Fe25+xAl25−x (x = 5, 10, 15) Heusler alloys through x-ray diffraction, temperature- and field-dependent DC magnetization, thermoremanent magnetization, magnetic memory effect, AC susceptibility measurements, and DFT calculations. The samples crystallize in a cubic β-Mn structure. The trend shows a reduction in lattice parameters (unit cell volume) with the increasing Fe proportion. These alloys exhibit strong antiferromagnetic interactions with large frustration parameters, indicating the presence of competing magnetic interactions. The DC magnetization data reveal spin glass-like features with a peak at spin glass freezing temperature (Tf). The observation of bifurcation in temperature-dependent zero-field-cooled and field-cooled magnetization curves, exponential dependence of the temperature variation of remanence and coercivity, magnetic relaxation, and magnetic memory effect below Tf support the spin-glass character of these alloys. The frequency dependence of Tf is also examined in the context of dynamic scaling laws, such as the Vogel-Fulcher law and critical slowing down model, which further supports the presence of spin glass behavior. In the theoretical DFT calculations, the electronic structure is found to be metallic and similar for both spin projections. Moreover, the antiferromagnetic arrangement of the magnetic moments, in line with the experimental observations, is stabilized by exchange interactions, resulting in an almost compensated total magnetic moment of 0.02-0.38 µB/f.u. This is probably caused by the frustrated structure and non-stoichiometric compositions of Mn50Fe25+xAl25−x

AB - The present study examines the effect of Fe/Al concentration on the structural and magnetic properties of Mn-rich Mn50Fe25+xAl25−x (x = 5, 10, 15) Heusler alloys through x-ray diffraction, temperature- and field-dependent DC magnetization, thermoremanent magnetization, magnetic memory effect, AC susceptibility measurements, and DFT calculations. The samples crystallize in a cubic β-Mn structure. The trend shows a reduction in lattice parameters (unit cell volume) with the increasing Fe proportion. These alloys exhibit strong antiferromagnetic interactions with large frustration parameters, indicating the presence of competing magnetic interactions. The DC magnetization data reveal spin glass-like features with a peak at spin glass freezing temperature (Tf). The observation of bifurcation in temperature-dependent zero-field-cooled and field-cooled magnetization curves, exponential dependence of the temperature variation of remanence and coercivity, magnetic relaxation, and magnetic memory effect below Tf support the spin-glass character of these alloys. The frequency dependence of Tf is also examined in the context of dynamic scaling laws, such as the Vogel-Fulcher law and critical slowing down model, which further supports the presence of spin glass behavior. In the theoretical DFT calculations, the electronic structure is found to be metallic and similar for both spin projections. Moreover, the antiferromagnetic arrangement of the magnetic moments, in line with the experimental observations, is stabilized by exchange interactions, resulting in an almost compensated total magnetic moment of 0.02-0.38 µB/f.u. This is probably caused by the frustrated structure and non-stoichiometric compositions of Mn50Fe25+xAl25−x

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85188497413

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001187986000010

U2 - 10.1063/5.0202812

DO - 10.1063/5.0202812

M3 - Article

VL - 160

JO - The Journal of chemical physics

JF - The Journal of chemical physics

SN - 0021-9606

IS - 11

M1 - 114705

ER -

ID: 55301336