Standard

Possibilities and Limitations of ICP-Spectrometric Determination of the Total Content of Tin, Its Inorganic and Organic Speciations in Waters with Different Salinity Levels—Part 1: Determination of the Total Tin Content. / Temerdashev, Zaual; Abakumov, Pavel; Bolshov , Mikhail et al.
In: Molecules, Vol. 28, No. 16, 5967, 2023.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{06b66603d00d44a8bf0524bc94f399dc,
title = "Possibilities and Limitations of ICP-Spectrometric Determination of the Total Content of Tin, Its Inorganic and Organic Speciations in Waters with Different Salinity Levels—Part 1: Determination of the Total Tin Content",
abstract = "This paper considers the features of determining the total tin content in waters with different salinity. Direct ICP-spectrometric analysis of sea waters with a salinity of more than 6‰ significantly reduced the analytical signal of tin by 70% (ICP-MS) and 30% (ICP-OES). The matrix effect of macrocomponents was eliminated by generating hydrides using 0.50 M sodium borohydride and 0.10 M hydrochloric acid. The effect of transition metals on the formation of tin hydrides was eliminated by applying L-cysteine at a concentration of 0.75 g/L. The total analyte concentrations, considering the content of organotin compounds, were determined after microwave digestion of sample with oxidizing mixtures based on nitric acid. The generation of hydrides with the ICP-spectrometric determination of tin leveled the influence of the sea water matrix and reduced its detection limit from 0.50 up to 0.05 µg/L for all digestion schemes. The developed analysis scheme made it possible to determine the total content of inorganic and organic forms of tin in sea waters. The total content of tin was determined in the waters of the Azov and Black seas at the levels of 0.17 and 0.24 µg/L, respectively. {\textcopyright} 2023 by the authors.",
author = "Zaual Temerdashev and Pavel Abakumov and Mikhail Bolshov and Darya Abakumova and Alexander Pupyshev",
note = "This work was supported by the Ministry of Education and Science of the Russian Federation FZEN-2023-0006.",
year = "2023",
doi = "10.3390/molecules28165967",
language = "English",
volume = "28",
journal = "Molecules",
issn = "1420-3049",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "16",

}

RIS

TY - JOUR

T1 - Possibilities and Limitations of ICP-Spectrometric Determination of the Total Content of Tin, Its Inorganic and Organic Speciations in Waters with Different Salinity Levels—Part 1: Determination of the Total Tin Content

AU - Temerdashev, Zaual

AU - Abakumov, Pavel

AU - Bolshov , Mikhail

AU - Abakumova, Darya

AU - Pupyshev, Alexander

N1 - This work was supported by the Ministry of Education and Science of the Russian Federation FZEN-2023-0006.

PY - 2023

Y1 - 2023

N2 - This paper considers the features of determining the total tin content in waters with different salinity. Direct ICP-spectrometric analysis of sea waters with a salinity of more than 6‰ significantly reduced the analytical signal of tin by 70% (ICP-MS) and 30% (ICP-OES). The matrix effect of macrocomponents was eliminated by generating hydrides using 0.50 M sodium borohydride and 0.10 M hydrochloric acid. The effect of transition metals on the formation of tin hydrides was eliminated by applying L-cysteine at a concentration of 0.75 g/L. The total analyte concentrations, considering the content of organotin compounds, were determined after microwave digestion of sample with oxidizing mixtures based on nitric acid. The generation of hydrides with the ICP-spectrometric determination of tin leveled the influence of the sea water matrix and reduced its detection limit from 0.50 up to 0.05 µg/L for all digestion schemes. The developed analysis scheme made it possible to determine the total content of inorganic and organic forms of tin in sea waters. The total content of tin was determined in the waters of the Azov and Black seas at the levels of 0.17 and 0.24 µg/L, respectively. © 2023 by the authors.

AB - This paper considers the features of determining the total tin content in waters with different salinity. Direct ICP-spectrometric analysis of sea waters with a salinity of more than 6‰ significantly reduced the analytical signal of tin by 70% (ICP-MS) and 30% (ICP-OES). The matrix effect of macrocomponents was eliminated by generating hydrides using 0.50 M sodium borohydride and 0.10 M hydrochloric acid. The effect of transition metals on the formation of tin hydrides was eliminated by applying L-cysteine at a concentration of 0.75 g/L. The total analyte concentrations, considering the content of organotin compounds, were determined after microwave digestion of sample with oxidizing mixtures based on nitric acid. The generation of hydrides with the ICP-spectrometric determination of tin leveled the influence of the sea water matrix and reduced its detection limit from 0.50 up to 0.05 µg/L for all digestion schemes. The developed analysis scheme made it possible to determine the total content of inorganic and organic forms of tin in sea waters. The total content of tin was determined in the waters of the Azov and Black seas at the levels of 0.17 and 0.24 µg/L, respectively. © 2023 by the authors.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85168731938

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001055382200001

U2 - 10.3390/molecules28165967

DO - 10.3390/molecules28165967

M3 - Article

VL - 28

JO - Molecules

JF - Molecules

SN - 1420-3049

IS - 16

M1 - 5967

ER -

ID: 44664624