Dense homogeneous nanocomposite TiSiCN coatings with a thickness of up to 15 microns and a hardness of up to 42 GPa were obtained by the method of reactive titanium evaporation in a hollow cathode arc discharge in an Ar + C2H2 + N2-gas mixture with the addition of hexamethyldisilazane (HMDS). An analysis of the plasma composition showed that this method allowed for a wide range of changes in the activation degree of all components of the gas mixture, providing a high (up to 20 mA/cm2) ion current density. It is possible to widely change the chemical composition, microstructure, deposition rate, and properties of coatings obtained by this method, by changing the pressure, composition, and activation degree of the vapor–gas mixture. An increase in the fluxes of C2H2, N2, HMDS, and discharge current leads to an increase in the rate of coating formation. However, the optimal coatings from the point of view of microhardness were obtained at a low discharge current of 10 A and relatively low contents of C2H2 (1 sccm) and HMDS (0.3 g/h), exceeding which leads to a decrease in the hardness of the films and the deterioration of their quality, which can be explained by the excessive ionic exposure and the non-optimal chemical composition of the coatings. © 2023 by the authors.
Original languageEnglish
Article number374
JournalMembranes
Volume13
Issue number4
DOIs
Publication statusPublished - 2023

    WoS ResearchAreas Categories

  • Biochemistry & Molecular Biology
  • Chemistry, Physical
  • Engineering, Chemical
  • Materials Science, Multidisciplinary
  • Polymer Science

    ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Filtration and Separation

ID: 38495153