Standard

e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. / Parmanbek, Nursanat; Aimanova, Nurgulim; Mashentseva, Anastassiya A. et al.
In: Membranes, Vol. 13, No. 7, 659, 2023.

Research output: Contribution to journalArticlepeer-review

Harvard

Parmanbek, N, Aimanova, N, Mashentseva, AA, Barsbay, M, Abuova, F, Nurpeisova, D, Jakupova, Z & Zdorovets, M 2023, 'e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes', Membranes, vol. 13, no. 7, 659. https://doi.org/10.3390/membranes13070659

APA

Parmanbek, N., Aimanova, N., Mashentseva, A. A., Barsbay, M., Abuova, F., Nurpeisova, D., Jakupova, Z., & Zdorovets, M. (2023). e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. Membranes, 13(7), [659]. https://doi.org/10.3390/membranes13070659

Vancouver

Parmanbek N, Aimanova N, Mashentseva AA, Barsbay M, Abuova F, Nurpeisova D et al. e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. Membranes. 2023;13(7):659. doi: 10.3390/membranes13070659

Author

Parmanbek, Nursanat ; Aimanova, Nurgulim ; Mashentseva, Anastassiya A. et al. / e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. In: Membranes. 2023 ; Vol. 13, No. 7.

BibTeX

@article{5da9bcf93b474e48b60405974b945d27,
title = "e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes",
abstract = "Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. {\textcopyright} 2023 by the authors.",
author = "Nursanat Parmanbek and Nurgulim Aimanova and Mashentseva, {Anastassiya A.} and Murat Barsbay and Fatima Abuova and Dinara Nurpeisova and Zhanar Jakupova and Maxim Zdorovets",
note = "The research project titled “Radiation induced and template synthesis of the photocatalytically active ion-track membrane composites” (contract #23152) was funded the International Atomic Energy Agency (IAEA) under coordinated research project F22070 (IAEA Research Contract No: 23152).",
year = "2023",
doi = "10.3390/membranes13070659",
language = "English",
volume = "13",
journal = "Membranes",
issn = "2077-0375",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "7",

}

RIS

TY - JOUR

T1 - e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes

AU - Parmanbek, Nursanat

AU - Aimanova, Nurgulim

AU - Mashentseva, Anastassiya A.

AU - Barsbay, Murat

AU - Abuova, Fatima

AU - Nurpeisova, Dinara

AU - Jakupova, Zhanar

AU - Zdorovets, Maxim

N1 - The research project titled “Radiation induced and template synthesis of the photocatalytically active ion-track membrane composites” (contract #23152) was funded the International Atomic Energy Agency (IAEA) under coordinated research project F22070 (IAEA Research Contract No: 23152).

PY - 2023

Y1 - 2023

N2 - Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. © 2023 by the authors.

AB - Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays. © 2023 by the authors.

UR - http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85166357420

UR - https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=tsmetrics&SrcApp=tsm_test&DestApp=WOS_CPL&DestLinkType=FullRecord&KeyUT=001037586200001

U2 - 10.3390/membranes13070659

DO - 10.3390/membranes13070659

M3 - Article

VL - 13

JO - Membranes

JF - Membranes

SN - 2077-0375

IS - 7

M1 - 659

ER -

ID: 43260395