The accuracy of forecasting geosynchronous satellite motion for 242-year term of forecast using a numerical model of artificial satellite motion taking into account the main perturbing factors including nonsphericity of the Earth's gravitational field, attraction by the Moon and the Sun, tides inside the Earth, direct light pressure with allowance for the Earth's shadow effect, and the Pointing-Robertson effect is considered. It is demonstrated that in this case, perturbations of the Earth's gravitational field harmonics up to the 27th order must be considered. For regular motions, the maximum error in forecasting the geosynchronous satellite position ranges from 0.14 to 2400 km, the error in forecasting the long semiaxis ranges from 0.013 to 1100 m, and the error in forecasting the subsatellite point longitude ranges from 0.069 '' to 3.4 degrees depending on the libration amplitude. The accuracy of forecasting depends on the libration amplitude: the less the libration amplitude, the higher the accuracy of forecasting. For quasi-random trajectories, the integration period for which the errors in forecasting do not exceed values obtained for libration motion is determined by the frequency and proximity of the trajectory to unstable stationary points. For the examples considered, this period is about 200 years. The estimated MEGNO factor confirms the efficiency of the numerical model of artificial satellite motion used to investigate the stochastic properties of geosynchronous satellite motion.
Original languageEnglish
Pages (from-to)841-849
Number of pages9
JournalRussian Physics Journal
Volume52
Issue number8
DOIs
Publication statusPublished - 1 Aug 2009

    WoS ResearchAreas Categories

  • Physics, Multidisciplinary

    ASJC Scopus subject areas

  • General Physics and Astronomy

ID: 38593126