In this work, we describe the design, synthesis, and structure-activity relationship of 6-(tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as inhibitors of Casein kinase 2 (CK2). At first, we optimized the reaction conditions for the azide-nitrile cycloaddition in the series of 6-cyano-7-aminoazolopyridimines and sodium azide. The regioselectivity of this process has been shown, as the cyano group of the pyrimidine cycle was converted to tetrazole while the nitrile of the azole fragment did not react. The desired tetrazolyl-azolopyrimidines were obtained in a moderate to excellent yields (42–95%) and converted further to water soluble sodium salts by the action of sodium bicarbonate. The obtained 6-(tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidines 2a–k and their sodium salts 3a–c, 3g–k showed nano to low micromolar range of CK2 inhibition while corresponding [1,2,4]triazolopyrimidines 10a–k were less active (IC50 > 10 µM). The leader compound 3-phenyl-6-(tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine 2i as CK2 inhibitor showed IC50 45 nM.
Original languageEnglish
Article number8697
JournalMolecules
Volume27
Issue number24
DOIs
Publication statusPublished - 7 Dec 2022

    ASJC Scopus subject areas

  • Molecular Medicine
  • Chemistry (miscellaneous)
  • Analytical Chemistry
  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Medicine(all)
  • Drug Discovery
  • Pharmaceutical Science

ID: 33229429