Proteins of the Dps family perform a dual function in bacterial cells. As ferritins, they protect cells from destructive effects of Fe2+ ions, while interacting with DNA they condense the genome in the absence of nutrients and the ability of Dps to self-aggregate is of a great importance. The way of genome remodelling from the condensed state to the active one is not yet known. Here, the effects of two sugar ligands on interaction between Dps and DNA have been studied in vitro. For the first time it was demonstrated that D-glucuronate and D-galacturonate, but not D-glucose, can decompose the dodecameric structure of the protein and D-glucuronate stimulated the formation of binary complexes with the linear DNA fragments. As a result of flexible molecular docking, it was found that the molecules of all three sugars potentially can form clusters inside the protein cavity of Dps, but D-glucuronate and D-galacturonate were also bound in the region of intersubunit contacts of oligomer. The consequent destabilization of the intersubunit bonding network can be the main factor provoking the protein decay to the smaller oligomeric forms. Such a structural rearrangement, leading to a reduction in aggregation, may play a key role in genome decondensation during cell transition to the phase of rapid growth.
Translated title of the contributionHexuronates Affect Oligomeric Form of a Structural Protein of Bacterial Nucleoid Dps and Its Aibility to Bind to Linear DNA Fragments
Original languageRussian
Pages (from-to)1059-1067
Number of pages9
JournalБиофизика
Volume61
Issue number6
Publication statusPublished - 2016

    GRNTI

  • 34.00.00 BIOLOGY

    Level of Research Output

  • VAK List

ID: 1658494